
EPFL ME 2-1: Erreur vrais

- Analyse de sesibilité
 - Changement à l'entrée et à la sortie
 - Section et déformation d'une poutre
 - Compost et température
 - Taux d'imposition marginal
- Propagation expression matricielle
 - Dans une addition
 - Dans une multiplication
 - Pour une combinaison

$$y = \mathbf{f}(\ell) \implies \delta y = \mathbf{F} \cdot \delta \ell$$

ME 2-2: Erreur maximale

- Dédinitions
 - Ecart-type et tolérance
 - Erreur absolue et relative
- Calcul d'incertitude
 - Addition et soustraction: somme des erreurs absolues
 - Multiplication: somme des erreurs relatives
 - Division? → exercice!

$$y = \mathbf{f}(\ell) \implies \varepsilon_y = |\mathbf{F}| \cdot \varepsilon_\ell$$

- Faiblesses des erreurs vrais et maximales
 - Comment tenir compte des corrélations des données ?
 - Comment obtenir les corrélations des résultats ?

Propagation d'erreur	viale Analyse de sensibilité	maximale Calcul de tolérance	moyenne ou quadratique Propagation de variance
modèle fonctionnel $\mathbf{y} = \mathbf{f}\left(\ell ight)$	$\mathbf{F}=$	\mathbf{F}	\mathbf{F}
modèle stochastique	?	$\varepsilon_i =$	σ_i ,
loi	$\delta y =$	$\varepsilon_y =$	$\mathbf{K}_{yy} =$
cas particuliers	$ \delta_{a+b} = \\ \delta_{a-b} = $	$+$ ou $-$: Σ err. absolue	
opérations de base	$\delta_{a \cdot b} = \delta_{a/b} =$	\times ou \div : Σ err. relative	
propriétés	Si ℓ change de tant, y change de tant, et!	cumul pessimiste + ou \times : $\rho = +1$ - ou \div : $\rho = -1$	On considère les corrélations dans ℓ . On obtient les corrélations dans \mathcal{Y} .
notamment		<u> </u>	

EPFL

ME 2-3: Covariance et corrélation

- Matrices $\mathbf{K}_{\ell\ell}\left(\Sigma_{\ell\ell}\right)$ et $\mathbf{R}_{\ell\ell}$
 - Génération et interprétation :
 - ex. «Soupe» et «Triglav» papier / calculette
 - Représentation et stockage :
 - ex. «Kovac» Python

- Pour jeudi
 - Lire la section 2.4 et si nécessaire relire 2.1 à 2.3
 - Prépare des questions!
 - Inventaire des questions à 8:15, réponses dès 10:15
- Jeudi en salle cours avec votre ordinateur!
 - Env. 08:30 10:00, série 3 + corrigé séries 1 et 2

EPFL

ME 2-4: Propagation de variance

Définition

$$\delta y = \mathbf{F} \cdot \delta \ell \quad \Rightarrow \quad \mathbf{K}_{yy} = \mathbf{F} \cdot \mathbf{K}_{\ell\ell} \cdot \mathbf{F}^T$$

- Justification: additon de deux variables normales
 - Observations indépendantes (démo)
 - Observations corrélées (démo animation)
- Expression matricielle
 - Pour une multiplication
 - Pour une combinaison
 - Générale

 On tient compte des corrélations à l'entrée et l'on obtient les corrélations à la sorite!